

COMMUNICATING WITH
THE LOXONE MINISERVER
Loxone Config 9.0

In order to modernize our interface, we improved our Miniserver, allowing it to communicate with
WebSocket clients that conform to the RFC6455. This document explains what is to be done, in
order to communicate with our Miniserver on the basis of an RFC6455 websocket. Parts of this
document will cover communicating via HTTP-Requests too (e.g. Secured Commands, Hashing or
the Structure File).

Arguments in commands are wrapped in curly brackets, e.g.: “jdev/test/{the argument}”. So when
{the argument} is “yeah” it will look like this: “jdev/test/yeah” - no more curly brackets here.

Important Note

!
As of Loxone Config 9.0 token based authentication has been introduced. Along
with that, password based authentication has been deprecated. Password based
authentication will no longer be supported by March 2018.

This document has been revised and only contains info on token based
authentication. Please make sure your implementation is ready for tokens.

Table of contents
Important Note

Table of contents

Setting up a connection

What do we need?

Step-by-step guide

What can go wrong?

General Info

CloudDNS

Controls

Config 9.0

Communicating with the Miniserver Page 2 of 21

Commands

Encryption

Secured Commands

Hashing

Tokens

Permissions

States

Understanding the messages

Message Header

Structure of the Message Header

1st Byte: fix 0x03

2nd Byte: Identifier

3rd Byte: Info

1st Bit: Estimated

3rd Byte: reserved

4th-8th Byte: length of payload

The actual messages

Text-Messages

Binary Files

Event-Tables

Event-Table of Value-States

Event-Table of Text-States

Binary-Structure of a Text-Event

Event-Table of Daytimer-States

Binary-Structure of a Daytimer-Event-Table

Config 9.0

Communicating with the Miniserver Page 3 of 21

Binary-Structure of a Daytimer-Entry

Event-Table of Weather-States

Binary-Structure of a Weather-Event-Table

Binary-Structure of a Weather-Entry

The UUID

Binary-Structure of a UUID

Converting a UUID to a string

Icons

SVG

Where to get them, where to put them

Caching

Structure-File: LoxAPP3.json

Download and caching

More info

Command Encryption

Step-by-step Guide HTTP Requests

Sending encrypted commands over the websocket

Tokens

Acquiring tokens

Authenticating using tokens

Refreshing tokens

Killing tokens

Handling an active connection

Keeping the connection alive

Detecting issues

Config 9.0

Communicating with the Miniserver Page 4 of 21

Setting up a connection

What do we need?
● a websocket client implementation conforming to the RFC6455
● the IP or URL of the Miniserver (including the port)

○ beware, if the Miniserver is using the Loxone CloudDNS service, you need to resolve
it first. The websocket-redirect won’t work. (see CloudDNS)

● valid credentials (user & password)

Step-by-step guide
Earlier versions of this document did cover password based authentication and authentication
without making use of encryption. This guide, however, is based on using encryption and tokens.

1. ensure the Miniserver is reachable
a. our apps are using an HTTP-Request that returns both the Miniservers Mac-Address

and it’s config version: “{ipOrUrl}:{port}/jdev/cfg/api”
b. Alternatively “jdev/cfg/apiKey” may be used, it also returns a key used for hashing.

2. Acquire the Miniservers public key via “jdev/sys/getPublicKey” -> {publicKey}
a. Store on the client for reusing it next time
b. Format: X.509 encoded key in ANS.1

3. open a WebSocket connection
a. use the following path: “ws://{ipOrUrl}:{port}/ws/rfc6455”
b. specify “remotecontrol” as Sec-WebSocket-Protocol.
c. wss:// is not supported by the Miniserver.

4. Generate a AES256 key -> {key} (Hex)
5. Generate a random AES iv (16 byte) -> {iv} (Hex)
6. RSA Encrypt the AES key+iv with the {publicKey} -> {session-key} (Base64)

a. “{key}:{iv}” is the payload that needs to be encrypted using RSA
7. Exchange keys via “jdev/sys/keyexchange/{session-key}”
8. Generate a random salt, hex string (length may vary, e.g. 2 bytes) -> {salt}
9. There are two options now:

a. If a token exists, then authenticate as described in Authenticating using tokens
b. If a token needs to be acquired, proceed as described in Acquiring tokens

10. After either successful token based authentication or acquiring a new token, the socket is
authenticated and ready to go.

Update the {salt} on your behalf, eg. every hour. This prevents replay attacks on compromised

Config 9.0

Communicating with the Miniserver Page 5 of 21

http://tools.ietf.org/html/rfc6455

websocket connections.

● {cipher}: “nextSalt/{prevSalt}/{nextSalt}/{cmd}” encrypted with the session key (AES)

What can go wrong?
● If you provide invalid credentials you’ll receive a message with the response code 401.
● If you don’t authenticate within the first few seconds after establishing the socket

connection, you’ll receive a message with the response code 420 and the socket will close.
● If you do not authenticate, but try to send any other command but the command required

to authenticate or acquire a token, you will receive a response with code 400.
● If you are blocked due too many failed login attempts, the Miniserver will block you for a

certain time. The WebSocket closes right after it opens with a Close Code of 4003

Config 9.0

Communicating with the Miniserver Page 6 of 21

General Info
In order to communicate with the Miniserver, a few things have to be known. This is a short textual
explanation of the communication, details can be found further below.

CloudDNS
You can request the current IP Address of your Miniserver using an HTTP Request:
“dns.loxonecloud.com/?getip&snr={ SNR of Miniserver }&json=true”. The Request returns the current
IP Address and Port of the Miniserver represented as JSON.

Controls
In the following document a “Control” is a Function/Block-Function like “Virtual Input”, “Virtual
State”, “Intelligent Room Controller”, “Sauna” etc.

Commands
The Miniserver will answer every command it receives, it will return a TextMessage as
confirmation. This message contains the command it has received, an HTTP-Status-Code as success
indicator and a value. The value is the info that was requested or the state after a
control-command was executed - but beware, these are not fully implemented, so instead rely on
the state updates.

● a control command looks like
○ “jdev/sps/io/{uuid}/{command}”

● all commands can either start with “jdev/” or just “dev/”
○ “jdev/” in JSON-Format (Beware, the answer will contain ‘dev’ instead of ‘jdev’)
○ “dev/” delivers responses in XML-Format and is deprecated

Encryption
Available since 7.4.4.14

The hardware specifications of the Miniserver do not allow full featured SSL encryption, it would
put the CPU under too much pressure leading to delayed responses to events. In order to still be
able to send data to the Miniserver in a secure way (in addition to hashing), Command Encryption
was introduced.

Secured Commands
We have the possibility to use a “visualization password” for Controls (set in Loxone Config), those
passwords are added to the commands as described below:

1. request the visualization password from the user - {visuPw}

Config 9.0

Communicating with the Miniserver Page 7 of 21

2. request a {key} and a {salt} from the Miniserver (“jdev/sys/getvisusalt/{user}”)
a. {user} = the user whos visu password has been entered

3. Create an SHA1 hash of “{visuPw}:{salt}” - {visuPwHash}
4. Create an HMAC-SHA1 hash using the {visuPwHash} and the {key} (see Hashing) - {hash}
5. send “jdev/sps/ios/{hash}/{uuid}/{command}”

a. response has Code 200 if password was correct and command could be executed
b. a response with Code 500 means the password was incorrect

Hashing
1. the key from the “jdev/sys/getkey”, “jdev/sys/getkey2” or “jdev/sys/getvisusalt” responses are

hex-encoded
2. create a hash from the desired text (user:passHash, user:tokenHash, visuPwHash) using

HMAC-SHA1
3. encode the hash back to hex

Tokens
Tokens have been introduced in Loxone Config 9. They are used for authentication instead of
passwords. Tokens can expire, be revoked without changing the password - and they allow for a
much more refined permission handling. See separate section for details on how to handle tokens.

Permissions
Along with the introduction of tokens, a refined permission handling has been implemented. When
requesting a token, the desired permission is to be specified. For establishing connections, only
two permissions are important: the permission for the web (ID = 2) and the permission for the app
(ID = 4).

One of these two permissions must be specified when acquiring a token for communication
(opening a websocket or sending HTTP-Requests). “Web” means the token will have a short
lifespan and an a token with the “App” permission will last for a longer period (4 weeks).

States
In order to receive the states of sensors and actuators, state-updates need to be enabled on the
socket. This is done by sending “jdev/sps/enablebinstatusupdate” to the Miniserver. The Miniserver
will only publish the states of sensors and actuators that are used in the user interface.

After this command is sent, the client will receive large initial Event-Tables containing Value-,
Text-, Daytimer- and Weather-States. These Event-Tables contain the current states of all sensors
and actuators.

The client needs to store these infos for the time the connection is active, because further on the

Config 9.0

Communicating with the Miniserver Page 8 of 21

Miniserver will only inform the client on changes to these states.

These states are always sent out as an UUID paired with some sort of value, using the
Structure-File (see LoxAPP3.json) and the UUID you can find out what value belongs to which
control.

Config 9.0

Communicating with the Miniserver Page 9 of 21

Understanding the messages
As mentioned in the chapter on how to setup a connection, messages sent by the Miniserver are
always prequeled by a binary message that contains a MessageHeader. So at first you’ll receive the
binary Message-Header and then the payload follows in a separate message.

Message Header
The message header is used to distinguish what kind of data is going to be sent next and how
large the payload is going to be. In some cases, the Miniserver might not know yet how large the
payload is going to be. For these cases a flag indicates that the size is estimated (see Estimated).
The header is sent as a separate data packet before the actual payload is transmitted. This way the
clients know ahead how large the payload is going to be. Based on this info, clients know how long
it’s going to take and respond accordingly (UI or timeouts).

Structure of the Message Header
The Message Header is an 8-byte binary message. It always starts with 0x03 as first byte, the
second one is the identifier byte, which gives info on what kind of data is received next. The third
byte is used for information flags and the fourth byte is reserved and not used right now. The last 4
bytes represent an unsigned integer that tells how large the payload is going to be.

1st Byte 2nd Byte 3rd Byte 4th Byte 5th Byte 6th Byte 7th Byte 8th Byte

0x03 Identifier InfoFlags rsvd len len len len

typedef struct {
 BYTE cBinType; // fix 0x03
 BYTE cIdentifier; // 8-Bit Unsigned Integer (little endian)
 BYTE cInfo; // Info
 BYTE cReserved; // reserved
 UINT nLen; // 32-Bit Unsigned Integer (little endian)
} PACKED WsBinHdr;

1st Byte: fix 0x03

2nd Byte: Identifier
8-bit Unsigned Integer (little endian)

The identifier byte is used to distinguish between the different kinds of messages

Identifer Message-Type

0 Text-Message

Config 9.0

Communicating with the Miniserver Page 10 of 21

1 Binary File

2 Event-Table of Value-States

3 Event-Table of Text-States

4 Event-Table of Daytimer-States

5 Out-Of-Service Indicator - presumably due to an Firmware-Update. No message is
going to follow this header, the Miniserver closes the connection afterwards, the
client may try to reconnect.

6 Keepalive response (after sending “keepalive”, the Miniserver will respond with this
identifier - therefore the connection is up and running!)

7 Event-Table of Weather-States

3rd Byte: Info
The 3rd Byte of the Header is used to provide additional information regarding the incoming
message.

1st Bit 2nd Bit 3rd Bit 4th Bit 5th Bit 6th Bit 7th Bit 8th Bit

Estimated rsvd rsvd rsvd rsvd rsvd rsvd rsvd

1st Bit: Estimated
In order to get fast info of how big the next incoming data will be, a Header with the Estimated-Bit
set, tells, that the given size is only estimated (eg. Gateway Miniservers, ..)

An Estimated-Header is always followed by an exact Header to be able to read the data correctly!

3rd Byte: reserved

4th-8th Byte: length of payload
32-bit Unsigned Interger (little endian)
The size of the payload, may be estimated. This info can be used to adopt timeouts etc.

The actual messages

Text-Messages

Config 9.0

Communicating with the Miniserver Page 11 of 21

Text-Messages are supported since day one of WebSockets. They are handled by all WebSocket
implementations out there - so having a separate message-header telling there will be a
Text-Message wouldn’t be necessary. But in order to stay consistent in our application protocol, we
did add it for those messages as well.

Text-messages are received as responses to commands, but our Structure-File and other XML- or
JSON-Files are sent as Text-Messages too.

Binary Files
If you download files (e.g. images, statistic-data) from the Miniserver, you will receive a binary file.
As mentioned before, files with text-content (e.g. the LoxAPP3.json) will be be delivered as a
text-message, so you don’t have to decode it.

Event-Tables
Incoming events are always grouped as tables according to their type (Value, Text, Daytimer,
Weather). Each Event-Entry in these tables has it’s own UUID, so you can assign the values to the
correct Controls.

Event-Table of Value-States
Value-States are the simplest form of a state update, they consist of one UUID and one double
value each, so their size is always 24 Bytes.

Binary-Structure of a Value-Event

typedef struct {
 PUUID uuid; // 128-Bit uuid
 double dVal; // 64-Bit Float (little endian) value
} PACKED EvData;

Event-Table of Text-States
Text-States are more complex since their size varies based on the text they contain. That is why
they do not only consist of an UUID and the text, but also an unsigned int that specifies how long
the text is.

● The UUID-Icon is used by the “Status”-Control (see Icons)
● If textLenght is not a multiple of 4 then padding bytes are appended, that are to be

ignored.

Binary-Structure of a Text-Event

typedef struct { // starts at multiple of 4
 PUUID uuid; // 128-Bit uuid
 PUUID uuidIcon; // 128-Bit uuid of icon
 unsigned long textLength; // 32-Bit Unsigned Integer (little endian)
 // text follows here

Config 9.0

Communicating with the Miniserver Page 12 of 21

} PACKED EvDataText;

Event-Table of Daytimer-States
Like Text-States, Daytimer-States do not have a fixed size, it varies on how many Daytimer-Entries
there are per Daytimer.

“nEntries” tells the number of daytimer-entries which the package contains.

Analog Daytimer: each entry does have it’s value
Digital Daytimer: an existing entry means “on”, no entry means “off”

Binary-Structure of a Daytimer-Event-Table

typedef struct {
 PUUID uuid; // 128-Bit uuid
 double dDefValue; // 64-Bit Float (little endian) default value
 int nrEntries; // 32-Bit Integer (little endian)
 // entries (EvDataDaytimerEntry) follows here
} PACKED EvDataDaytimer;

Binary-Structure of a Daytimer-Entry

typedef struct {
 int nMode; // 32-Bit Integer (little endian) number of mode
 int nFrom; // 32-Bit Integer (little endian) from-time in minutes since midnight
 int nTo; // 32-Bit Integer (little endian) to-time in minutes since midnight
 int bNeedActivate; // 32-Bit Integer (little endian) need activate (trigger)
 double dValue; // 64-Bit Float (little endian) value (if analog daytimer)
} PACKED EvDataDaytimerEntry;

Event-Table of Weather-States
If an active Weather-Abo is up and running, we also get Weather-State Updates.

Each Weather-Event-Table contains info about the up-to-dateness (in Seconds since 2009, UTC) of
the Weather-Information, the number of entries and the entries itself.

Binary-Structure of a Weather-Event-Table

typedef struct {
 PUUID uuid; // 128-Bit uuid
 unsigned int lastUpdate; // 32-Bit Unsigned Integer (little endian)
 int nrEntries; // 32-Bit Integer (little endian)
 // entries (EvDataWeatherEntry) follows here
} PACKED EvDataWeather;

Binary-Structure of a Weather-Entry

typedef struct {
 int timestamp; // 32-Bit Integer (little endian)
 int weatherType; // 32-Bit Integer (little endian)
 int windDirection; // 32-Bit Integer (little endian)

Config 9.0

Communicating with the Miniserver Page 13 of 21

 int solarRadiation; // 32-Bit Integer (little endian)
 int relativeHumidity; // 32-Bit Integer (little endian)
 double temperature; // 64-Bit Float (little endian)
 double perceivedTemperature; // 64-Bit Float (little endian)
 double dewPoint; // 64-Bit Float (little endian)
 double precipitation; // 64-Bit Float (little endian)
 double windSpeed; // 64-Bit Float (little endian)
 double barometicPressure; // 64-Bit Float (little endian)
} PACKED EvDataWeatherEntry;

The UUID
The Miniserver uses UUIDs in order to uniquely identify controls, in- or outputs. That is why the
states that are published using Event-Tables have one UUID for each state, so that the values can
be linked to their controls. Each UUID has a fixed size of 128 Bit.

Structure-Files such as “LoxAPP2.xml” (deprecated) or the new, tidied up “LoxAPP3.json” are
providing the information on what UUID is related to what control, or to what in- or output. They
can be acquired by sending “data/LoxAPP2.xml” or “data/LoxAPP3.json” to the Miniserver.

Binary-Structure of a UUID
typedef struct _UUID {
 unsigned long Data1; // 32-Bit Unsigned Integer (little endian)
 unsigned short Data2; // 16-Bit Unsigned Integer (little endian)
 unsigned short Data3; // 16-Bit Unsigned Integer (little endian)
 unsigned char Data4[8]; // 8-Bit Uint8Array [8] (little endian)
} PACKED PUUID;

Converting a UUID to a string
CStringA str;
str.Format("%08x-%04x-%04x-%02x%02x%02x%02x%02x%02x%02x%02x",
 uuid.Data1,uuid.Data2,uuid.Data3,uuid.Data4[0],uuid.Data4[1],uuid.Data4[2],
 uuid.Data4[3],uuid.Data4[4],uuid.Data4[5],uuid.Data4[6],uuid.Data4[7])

Icons
In general, icons are used for rooms and categories, but also for displaying states, as in the
“Status”-Control. UUIDs are already used to link states to controls and furthermore they are also
used to identify icons and link them to groups (rooms or categories), or “Status”-Controls.

SVG
Along with the release of Loxone Config 6.0 a new format for icons was introduced: “Scalable
Vector Graphics”, short “svg”. Previously the only image format supported was “Portable Network
Graphics”, short “png”. SVGs are image descriptions in XML-Format, they are not only scaleable
losslessly, but they can also be modified and animated.

Config 9.0

Communicating with the Miniserver Page 14 of 21

Where to get them, where to put them
The structure file gives info what icon is to be used where. In new configurations you will mostly
find “svg”-Icons (e.g.: “00000000-0000-0020-2000000000000000.svg”). Since some Miniservers
might make use of customized icons, there will still be some PNGs out there, even with newer
Config-Versions. Those can be identified either by “.png” or the file appendix is simply missing (e.g.
“00000000-0000-0020-2000000000000000”).

Images can be downloaded over the WebSocket by simply sending the UUID plus the type to the
Miniserver. So “00000000-0000-0020-2000000000000000.svg” will return the SVG-File of this
image, while “00000000-0000-0020-2000000000000000.png” will return the same image as PNG.

Text-States only contain UUIDs for icons without specifying the format. The only way to identify
whether it is a PNG or an SVG is the response type given in the Message-Header when
downloading the Icon. If it’s an Text-Message, then it’s an SVG (since it’s basically an XML-File),
otherwise it’s an PNG and the Message-Header will indicate that it’s a binary file. So for all
“Status”-Controls try to download an SVG and later decide based on the response whether it is PNG
or SVG.

Caching
An icon is identified by an UUID per Miniserver. This UUID doesn’t change as long as the icon
remains the same, regardless if you’re connected locally or remote. So you can reuse the
downloaded icons locally and remote.

Config 9.0

Communicating with the Miniserver Page 15 of 21

Structure-File: LoxAPP3.json
The Structure-File was mentioned a few times before in this document, it is the central element for
creating a visualisation. It contains almost everything you need to know about the Miniserver.

Download and caching
The new structure-file can be downloaded by sending “data/LoxAPP3.json” to the Miniserver. Since
it’s a text-file, the Miniserver will respond with a Message-Header on the websocket accordingly.

The Structure-File has got a field “lastModified that contains a timestamp, this is the date when the
configuration of the Miniserver was last changed. So every time a connection to a Miniserver is
established, the first thing to do after the WebSocket is up and running is to check if your cached
version of the Structure-File is up to date. This is achieved by sending “jdev/sps/LoxAPPversion3”
to the Miniserver and comparing its response to the value of the “lastModified” field of your cached
Structure-File.

More info
For detailed information on the Structure File & the controls within please see the separate
document on the Structure File.

Config 9.0

Communicating with the Miniserver Page 16 of 21

Command Encryption
Available since 8.1

As mentioned in the introduction section on encryption, Command Encryption is a technique that
allows clients to encrypt commands that would usually be sent via plain text. It is based on
AES256 and Public-key cryptography for the AES session key exchange.

A few commands aren’t supported:

● Images/Icons (.svg, .png, camimage)
● Files (LoxAPP3.json, fsget/fslist)
● Statistic Files and Data

RSA AES

ECB, PKCS1, Base64 with NoWrap CBC, ZeroBytePadding, Base64 with NoWrap,
16 Byte IV

Step-by-step Guide HTTP Requests
1. Acquire the Miniservers public key via “jdev/sys/getPublicKey” -> {publicKey}

a. Store on the client
b. Format: X.509 encoded key in ANS.1

2. Prepare your command -> {cmd}
a. If authentication is required, append it to the {cmd} as described in Authenticating

using tokens
3. Generate a random salt, hex string (length may vary, e.g. 2 bytes) -> {salt}
4. Prepend the salt to the actual message “salt/{salt}/{cmd}” ->{plaintext}
5. Generate a AES256 key -> {key} (Hex)
6. Generate a random AES iv (16 byte) -> {iv} (Hex)
7. Encrypt the {plaintext} with AES {key} + {iv} -> {cipher} (Base64)
8. URI-Component-Encode the {cipher} -> {enc-cipher}
9. Prepare the command-> {encrypted-command}

a. “jdev/sys/enc/{enc-cipher}”
i. only the command itself is encrypted

b. “jdev/sys/fenc/{enc-cipher}”

Config 9.0

Communicating with the Miniserver Page 17 of 21

https://en.wikipedia.org/wiki/Public-key_cryptography

i. The Miniserver also AES Encrypts the response (Base64)
ii. The mime-type is the one from the decrypted response

10. RSA Encrypt the AES key+iv with the {publicKey} -> {session-key} (Base64)
a. “{key}:{iv}”

11. URI-Component-Encode the {session-key} -> {enc-session-key}
12. Append the session key to the {encrypted-command} -> {encrypted-command}

a. “{encrypted-command}?sk={enc-session-key}”
13. Send the request!

a. This request doesn’t require credentials itself, the {cmd} may contain the
credentials if needed

14. The Miniserver will decrypt and process the command.
a. If it cannot be decrypted (invalid public key, unexpected salt change) it will return

401
15. The Miniserver will respond after the decrypted command was processed and return the

value & status code as with a regular command.

Sending encrypted commands over the websocket
1. AES Encrypt the command “salt/{salt}/{cmd}” -> {cipher}
2. Prepare the command-> {encrypted-command}

a. “jdev/sys/enc/{enc-cipher}”
i. only the command itself is encrypted

b. “jdev/sys/fenc/{enc-cipher}”
i. The Miniserver also AES Encrypts the response (Base64)

ii. The mime-type is the one from the decrypted response
3. Send the command & if needed (fenc) AES-decrypt the response using the {key} and {iv}

created when the connection was established.

Config 9.0

Communicating with the Miniserver Page 18 of 21

Tokens
Available since 9.0

Clients initially acquire a token using the users password. This token is stored and used instead of
the password for authentication. The following section will go into detail on how to work with
tokens, assuming that all commands are sent on a secure, encrypted connection as explained in
Encryption.

Acquiring tokens
Acquiring a token is similar to password authentication in previous versions. Additionally to the
“key”, a “salt” is needed for acquiring a token. A token can be either acquired via encrypted requests
using HTTP requests or via a websocket.

● Acquire both the “key” & “salt” at once using “jdev/sys/getkey2/{user}”
○ {user} is the username for whom to acquire the token.

● Hash the password including the user specific salt
○ {pwHash} is the uppercase result of hashing the string “{password}:{salt}” using the

SHA1 algorithm.
○ {salt} is part of the result of the getkey2-Request.

● Create the hash that includes the user name
○ {hash} is the string “{user}:{pwHash}” hashed with the key returned by the

getkey2-Request using HMAC SHA1. For details on the hashing process see Hashing
● Request a token using “jdev/sys/gettoken/{hash}/{user}/{permission}/{uuid}/{info}

○ {permission} specifies the permission this token needs to grant. This impacts the
tokens lifespan, e.g. a token with the web-permission (2) will last for a short period
of time, while a token with the app-permission (4) will last for weeks.

○ The {uuid} identifies the client who is requesting the token on the Miniserver. It
allows to look up all tokens a client has been granted. The uuid has to be in the
following format as this one: “098802e1-02b4-603c-ffffeee000d80cfd”.

○ The {info} contains a (Url-Encoded) text describing the client, e.g.
“Thomas%20iPhone%20X”

● Store the response, it contains info on the lifespan, the permissions granted with that token
and the token ID itself.

○ {token} contains the token itself, this is what needs to be stored for authenticating
with a token.

○ {validUntil} represents the end of the tokens lifespan in seconds since 1.1.2009
○ {tokenRights} holds a bitmap, where a flag is set for each granted permission.
○ {unsecurePass} is set to true if a weak password is in place, it should result in a

Config 9.0

Communicating with the Miniserver Page 19 of 21

prominent warning for the user, asking to immediately change the password.
○ {key} can be used for subsequent commands, just like a getkey-Result.

● A websocket connection on which a token was acquired successfully is considered
authenticated.

Authenticating using tokens
● Prepare the {hash}

○ {hash} is the outcome of hashing “{user}:{token}” along with the result of a
getkey-Request using the HMAC-SHA1 algorithm. (see Hashing)

● Prepare the {authCmd}
○ “authwithtoken/{hash}/{user}” for websockets
○ For HTTP-Requests “?autht={hash}&user={user}” is appended to the existing cmd.

● Encrypt and send the {authCmd}
○ Details on encrypted commands via Websocket
○ Details on encrypted commands via HTTP-Requests

Refreshing tokens
Tokens have a limited lifespan, depending on the permissions granted with them. When this
lifespan expires, tokens will no longer be valid. Token lifespans will be expanded each time they
are used. However it might be necessary to keep them alive without using them.

● Send “jdev/sys/refreshtoken/{tokenHash}/{user}” via websocket (HTTP support not verified)
○ {tokenHash} is the outcome of hashing the {token} with the result of a

getkey-Request. (see Hashing)
○ {user} is the user whose token is to be refreshed

This request will only succeed if the token is valid. If successful, the response will contain an
updated {validUntil}-value and an updated {unsecurePass}-flag. When changing passwords, this
request can be used to determine if the new password is secure, by checking the
{unsecurePass}-flag of a refresh-request afterwards.

Killing tokens
Tokens can be explicitly invalidated (= “killed”) too. It is recommended to kill a token as soon as it
is no longer needed, as it helps keeping the Miniservers token storage clean.

● Send “jdev/sys/killtoken/{tokenHash}/{user}”
○ {tokenHash} is the outcome of hashing the {token} with the result of a

getkey-Request. (see Hashing) {user} is the user whose token is to be killed

Config 9.0

Communicating with the Miniserver Page 20 of 21

A killed token will no longer be usable.

Handling an active connection

Keeping the connection alive
The Miniserver has to watch over it’s clients and has to keep them all informed on everything that’s
changed. In order to prevent sending updates to clients that aren’t listening anymore, it will close
the connection if the client doesn’t send anything for more than 5 minutes.

To prevent this, while not having to constantly query a control or alike, there is a special command
called “keepalive”. Whenever a client sends this command to the Miniserver, it will respond with a
Message Header with the identifier 0x06. This command can be used to tell the Miniserver that the
client is still there and listens on the WebSocket.

Detecting issues
Our websocket is used for remote control. Mostly this is being done by apps running on
smartphones that don’t always enjoy the best connection quality (poor carrier network, WiFi almost
out of reach). A poor or broken connection might cause that the user looks at old outdated data.
E.g.: the app could show that your garage door is closed, while it’s fully open.

By repeatedly sending out the keepalive-Request, the time between request and response (8 byte
Message-Header) can be used as an indicator for the connection quality. When the Miniserver
sends large messages this might lead to mistakenly detecting a connection problem, since
receiving the response might take a while. The payload size in the Message-Headers can be used to
adopt timeouts accordingly.

Config 9.0

Communicating with the Miniserver Page 21 of 21

